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Abstract— The presence of mixed pixels in the hyperspectral
data makes unmixing to be a key step for many applications.
Unsupervised unmixing needs to estimate the number of end-
members, their spectral signatures, and their abundances at
each pixel. Since both endmember and abundance matrices are
unknown, unsupervised unmixing can be considered as a blind
source separation problem and can be solved by nonnegative
matrix factorization (NMF). However, most of the existing NMF
unmixing methods use a least-squares objective function that is
sensitive to the noise and outliers. To deal with different types
of noises in hyperspectral data, such as the noise in different
bands (band noise), the noise in different pixels (pixel noise),
and the noise in different elements of hyperspectral data matrix
(element noise), we propose three self-paced learning based
NMF (SpNMF) unmixing models in this article. The SpNMF
models replace the least-squares loss in the standard NMF
model with weighted least-squares losses and adopt a self-paced
learning (SPL) strategy to learn the weights adaptively. In each
iteration of SPL, atoms (bands or pixels or elements) with weight
zero are considered as complex atoms and are excluded, while
atoms with nonzero weights are considered as easy atoms and are
included in the current unmixing model. By gradually enlarging
the size of the current model set, SpNMF can select atoms from
easy to complex. Usually, noisy or outlying atoms are complex
atoms that are excluded from the unmixing model. Thus, SpNMF
models are robust to noise and outliers. Experimental results on
the simulated and two real hyperspectral data sets demonstrate
that our proposed SpNMF methods are more accurate and robust
than the existing NMF methods, especially in the case of heavy
noise.
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I. INTRODUCTION

HYPERSPECTRAL sensors can capture image data
across hundreds of narrow and contiguous spectral

bands. Due to the low spatial resolution of hyperspectral
sensors, microscopic material mixing, and multiple scatter-
ing [1], each image pixel may cover several different materials,
and its spectrum is a mixture of several pure materials’
spectra. The existence of mixed spectra dramatically affects
the application of hyperspectral data. A technique to deal
with the mixed spectra problem is hyperspectral unmixing [1],
which aims at decomposing a mixed spectrum into pure mate-
rials’ spectra (endmembers) and their corresponding fractions
(abundances). It is clear that two main tasks of hyperspectral
unmixing are endmember extraction and abundance estima-
tion. These two steps can be performed sequentially, i.e., first
extracting endmembers by n-finder algorithm (N-FINDR) [2]
or vertex component analysis (VCA) [3] and then estimating
abundances by least-squares methods. However, endmember
extraction methods in the first step often assume the presence
of pure pixels in the data [2]–[4]. When pure pixels are
absent, traditional endmember extraction methods will fail.
Fortunately, blind source separation (BSS) algorithms, such
as nonnegative matrix factorization (NMF) methods, can be
used to unmix hyperspectral data without the assumption of
pure pixels.

In the NMF, a matrix is factorized into two low-rank
matrices with the property that all three matrices have no
negative elements. The nonnegativity and part-based repre-
sentation makes the resulting matrices easier to be inter-
preted and suitable for many real applications [5], such as
clustering, feature extraction, and hyperspectral unmixing.
For hyperspectral unmixing problem, NMF can decompose
a nonnegative hyperspectral data matrix into a nonnegative
endmember matrix and a nonnegative abundance matrix simul-
taneously. During past decades, many NMF-based unmixing
methods have been proposed. Miao and Qi [6] proposed a
minimum volume-constrained NMF (MVCNMF) method for
unsupervised endmember extraction from highly mixed image
data. Qian et al. [5] proposed an �1/2-NMF method that
imposed an �1/2 sparsity constraint on the abundance matrix.
Wang et al. [7] proposed an endmember dissimilarity-
constrained NMF method. Feng et al. [8] developed a
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sparsity-constrained deep NMF with total variation technique
for hyperspectral unmixing. Du et al. [9] made breakthrough
results that, for the first time, considered spectral unmixing as a
multitask learning-based blind source separation problem and
provided a promising solution to the automatic hyperspectral
image processing problem.

The aforementioned NMF methods improved the original
NMF unmixing method by imposing additional constraints
either on the endmember matrix or on the abundance matrix.
When there exists noise in the hyperspectral data, the perfor-
mance of these models will dramatically degrade. Due to the
imaging mechanism, the hyperspectral data inevitably include
different types of noises [10], [11], i.e., Gaussian noise,
impulse noise, stripes, and deadlines. To cope with noisy
bands, Wang et al. [12] proposed a correntropy-based robust
NMF (CENMF) method that employed a correntropy-based
metric to replace the least-squares metric and used a half-
quadratic technique to solve the model. Rather than using the
half-quadratic technique, Zhu et al. [13] employed alternating
direction method of multipliers (ADMM) technique to solve
the correntropy-based NMF model. The noise sensitive
least-squares metric in the NMF can also be replaced by
other robust metrics, such as �2,1-norm- and �1,2-norm-based
metrics [14], [15]. Huang et al. [4] combined the �2,1-
norm and �1,2-norm and proposed a spectral–spatial robust
NMF (SSRNMF) model to deal with the rowwise band noise
and columnwise pixel noise.

To deal with the rowwise band noise, columnwise pixel
noise, and elementwise noise, in this article, we employ
self-paced learning (SPL) strategy to select some “good”
atoms (i.e., bands or pixels or elements) for NMF unmix-
ing and propose three self-paced NMF (SpNMF) models
to handle the band noise, pixel noise, and element noise,
respectively. Our SpNMF model can be considered as a
regularized weighted NMF model that uses a self-paced reg-
ularizer to adaptively learn weight for each atom based on
the approximation error and then uses the learned weights
to eliminate the effect of noisy atoms. According to the
nature of SPL, the weight vector can be used to indicate
the importance of atoms, and only the important atoms with
nonzero weights (i.e., “easy” or “good” atoms) are included in
the current unmixing model. Thus, SpNMF methods always
select some “good” atoms into the unmixing model and, thus,
can automatically exclude “complex” or “bad” atoms. Due to
the atom-selection ability of SPL, SpNMF models can provide
robust performance in outlier or heavy noise cases [16], [17].

The contributions of this article are threefold.
1) We propose three robust SPL-based hyperspectral

unmixing methods to handle band, pixel, and ele-
ment noise called self-paced NMF for band weight-
ing (SpNMFB), self-paced NMF for pixel weighting
(SpNMFP), and self-paced NMF for element weight-
ing (SpNMFE) and develop an alternative optimization
strategy (AOS) to find corresponding solutions.

2) We provide a comparison of different NMF-based
unmixing methods from the viewpoints of the loss
function, regularizer, and weight and also explain that
SpNMF methods are robust to noise or outliers.

3) We evaluate different NMF-based unmixing methods on
both simulated and real data sets. Extensive experimen-
tal results validate the effectiveness and robustness of
SpNMF methods for hyperspectral unmixing.

The rest of this article is organized as follows. In Section II,
NMF unmixing models are reviewed. Section III describes the
proposed self-paced NMF models. The experimental results
and analysis are provided in Section IV. Finally, Section V
draws the conclusion.

II. NMF UNMIXING MODEL

Due to the limited spatial resolution, an HSI pixel usually
covers several different materials, and its spectral response is
a mixture of these materials [1], [5]. Under the linear mixing
mechanism, each observed pixel y ∈ RB×1 can be represented
as a linear combination of several spectral signatures called
endmembers, i.e., x1, . . . , xP

y = x1w1 + · · · + xPwP + e = Xw + e (1)

where X = [x1, . . . , xP ] ∈ RB×P is a nonnegative spectral
signature matrix, w = [w1; · · · ;wP ] ∈ RP×1 is the abundance
fraction for each endmember, and e is the additive noise vector.

Assume that there are N pixels in the HSI. The linear
mixing model (LMM) can be written as

Y = XW+ E (2)

where Y = [y1, . . . , yN ] ∈ RB×N is the hyperspectral data,
W = [w1, . . . , wN ] ∈ RP×N is the endmember abundance
matrix, and E is the noise matrix. In the LMM framework,
the endmember and abundance matrices should be nonnegative
from the viewpoint of physical meaningfulness. Meanwhile,
the abundance vector for each pixel should satisfy the sum-
to-one constraint [1].

For the unmixing problem, we only have the hyperspectral
data Y and need to solve both the endmember and abundance
matrices. Due to the nonnegative nature, the NMF model can
be used for hyperspectral unmixing [5], [6], [18]. The NMF
unmixing model can be written as

min
X,W

∥∥Y− XW
∥∥2

F
, (3)

s.t. Xbp ≥ 0, Wpn ≥ 0 ∀b, p, n
P∑

p=1

Wpn = 1, n = 1, . . . , N

where ‖ · ‖F denotes the Frobenius norm.
Due to nonnegative constraints on X and W, NMF can learn

a part-based representation of data, which has been proven to
be suitable for hyperspectral unmixing [5], [18]. The NMF
unmixing model (3) can be solved by the multiplicative update
algorithm [19], [20]. However, due to the nonconvexity of the
NMF objective function with respect to both X and W, it is
difficult to obtain a global optimal solution [5]. In addition,
NMF lacks a unique solution. In order to restrict the feasible
solution set, various constraints have been incorporated into
the NMF framework [5], [6], [8], [12], [18].

The commonly used constraints are sparsity constraints on
the abundance matrix W, such as �q-norm (0 < q ≤ 1)
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constraint on W. The �q-norm-based NMF unmixing model
(�q-NMF) only changes the objective function of NMF
model (3) as

min
X,W

∥∥Y− XW
∥∥2

F
+ λ‖W‖q (4)

where λ is a regularization parameter and ‖W‖q is the
�q-regularizer, that is

‖W‖q =
N,P∑

n,p=1

(wn(p))q .

The �q-NMF model (4) can be easily solved by the follow-
ing multiplicative iterative rules:

X = X. ∗ (YWT)./(XWWT) (5)

W = W. ∗ (X̄TȲ)./(X̄TX̄W+ λqWq−1) (6)

where Ȳ = [Y; δ1T
N ] and X̄ = [X; δ1T

P] are the augmented
matrices by adding a row of constants to the hyperspec-
tral data matrix Y and endmember matrix X for the pur-
pose of imposing the abundance sum-to-one constraint with
parameter δ [5].

III. SELF-PACED NMF UNMIXING MODEL

A. Self-Paced Learning

Given a set of training samples {zi , yi }Ni=1, the task of
classical learning algorithm is to learn a function f associated
with parameter θ by minimizing the following empirical risk:

min
θ

E(θ) =
N∑

i=1

L(yi , f (zi , θ)) (7)

where L is a loss function which measures the error between
the true and estimated labels.

The traditional learning scheme (7) needs to use all training
samples to learn model parameter θ . However, in reality, not
all samples are useful especially when there exist outliers in
the data. In addition, the importance of training samples is
also different. Therefore, it would be better to consider the
differences in training samples in the design of the learning
model. SPL considers the differences in training samples
by adaptively selecting samples from easy to complex into
training using a self-paced regularizer [21], [22]. In detail,
SPL simultaneously optimizes the model parameter θ and the
sample weight vector u = [u1, . . . , uN ]T as

min
θ,u

E(θ , u) =
{

N∑
i=1

ωi L
(
yi , f (zi , θ )

)+ h(γ, ui)

}
(8)

where ui is a weight that describes the degree of complexity
of sample zi , h(γ, u) is called as self-paced function, and
γ is a “model age” parameter that decides the size of the
model [22]. Given a small γ , only “easy” samples with small
losses �i = L

(
yi , f (zi , θ)

)
are considered. By gradually

increasing the model age γ , more and more complex samples
with larger losses are included into the training process to learn
a more “mature” model [22]. The solution of SPL model (8)
can be obtained by alternatively updating model parameter θ

and weight vector u.

B. Self-Paced NMF for Band Weighting

From the �q-NMF model (4), we can see that the loss
function ‖Y−XW‖2

F is a least-squares metric that is sensitive
to noise or outliers in the data Y. Due to the imaging mecha-
nism, the hyperspectral data Y inevitably exists some noisy or
outlying bands. The images corresponding to different spectral
bands may be corrupted by different kinds of noise, such
as the Gaussian noise, stripe noise, impulse noise, deadlines,
and their mixtures. The noisy bands will dramatically affect
the stableness and accuracy of the least-squares-based NMF
unmixing model. In order to eliminate the negative effect of
noisy bands, we introduce SPL strategy to automatically select
some important spectral bands for unmixing. For this purpose,
we first expand the least-squares loss function in row

L = ‖Y− XW‖2
F =

B∑
b=1

∥∥Yb − (XW)b
∥∥2

2 (9)

where Yb denotes the bth row of the matrix Y.
Then, we embed the SPL strategy (8) into the �q-NMF

model (4) and propose a self-paced NMF unmixing model
for band weighting (SpNMFB) as follows:

min
X,W,u

B∑
b=1

{
ub

∥∥Yb − (XW)b
∥∥2

2 + h(γ, ub)
}
+ λ‖W‖q (10)

where u = [u1; u2; . . . ; uB] is a weight vector to describe the
importance of different spectral bands, and h is a self-paced
function associated with “model age” parameter γ .

In model (10), the self-paced regularizer can be used to
adaptively select some “good” bands based on the reconstruc-
tion residual of each band. The solution of model (10) can be
obtained by an alternative updating strategy.

Fixing the weight vector u, the SpNMFB model can be
rewritten as

min
X̃,W

∥∥∥Ỹ− X̃W
∥∥∥2

F
+ λ‖W‖q (11)

where Ỹ = U(1/2)Y, X̃ = U(1/2)X, and U is a diagonal
matrix whose diagonal element is Ubb = ub. It is clear that
model (11) is also an �q-NMF model and can be solved by
the multiplicative update rule. The final endmember matrix is
X = U−(1/2)X̃.

When X and W are obtained, the weight ub for the bth
spectral band can be optimized by

min
0≤ub≤1

ub�b + h(γ, ub) (12)

where �b = ‖Yb − (XW)b‖2
2 is a constant for given X

and W. Thus, the weight is only determined by the self-paced
function h. The commonly used self-paced functions are
binary, linear, logarithmic, and mixture functions [17], [22].
Taking the following binary function as an example

h(γ, ub) = −γ ub (13)

the weight vector of model (12) is

ub =
{

1, �b ≤ γ

0, �b > γ.
(14)
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It is clear that the spectral bands with small errors (�b ≤ γ )
are used, and bands whose losses are larger than the
threshold γ are not used for unmixing (ub = 0). The weight
vector u indicates the importance or complexity of different
spectral bands. Initializing the model age γ as a small value,
only very limited “easy” or “good” bands are involved in
the hyperspectral unmixing model. By gradually increasing γ ,
more bands from easy to the complex are included in the
learning process [22].

In the implementation of the algorithm, given the ini-
tial endmember matrix X0 and the abundance matrix W0,
SpNMFB iteratively updates the weight vector, endmember,
and abundance matrices and finally obtains the endmember
matrix X∗ and the abundance matrix W∗. To refine the results,
we set the obtained X∗ and W∗ as the initial endmember
and abundance matrices to rerun the algorithm. By repeating
the process several times, the performance of our SpNMFB
algorithm can be improved to a certain extent. The detailed
process of the proposed SpNMFB algorithm can be summa-
rized in Algorithm 1.

Algorithm 1 Self-Paced NMF Model for Band Weighting
(SpNMFB)

Input: Hyperspectral data matrix Y,
initial endmember X0 and abundance W0,
initial model age γ0 and step size η,
the number of repetitions R.

Output: Endmember and abundance matrices.

Repeatedly run the following steps R times:
1. Initialize X(0) = X0, W(0) =W0, γ (0) = γ0, set k = 1.
2. Run the following steps until convergence:

(a) calculate the band reconstruction errors:
�

(k)
b = ‖Yb − (X(k−1)W(k−1))b‖2

2

(b) estimate self-paced weights:
u(k)

b = arg min
0≤ub≤1

ub�
(k)
b + h(γ (k−1), ub)

(c) update weight: U(k) = diag
{

u(k)
1 , . . . , u(k)

B

}
(d) compute matrix:

Ỹ = (U(k−1))
1
2 Y

X̃(k−1) = (U(k−1))
1
2 X(k−1)

(e) update endmember and abundance:
(X̃(k), W(k)) = LqNMF(Ỹ, X̃(k−1), W(k−1))

X(k) = (U(k−1))−
1
2 X̃(k)

(f) update model age: γ (k) = γ (k−1) + η
(g) k ← k + 1

3. Set X0 = X(k−1), W0 =W(k−1)

C. Self-Paced NMF for Pixel Weighting

Because �q-NMF model (4) needs to handle the whole
hyperspectral data matrix Y, the noisy or background pixels
in Y also affect the unmixing performance. To eliminate the

effect of noisy pixels, we propose a self-paced NMF unmixing
model for pixel weight (SpNMFP) as follows:

min
X,W,u

N∑
n=1

{
un‖Yn − (XW)n‖2

2 + h(γ, un)
}+ λ‖W‖q (15)

where Yn denotes the nth column of the matrix Y, u =
[u1; u2; . . . ; uN ] is a weight vector to describe the importance
of different pixels, and h is a self-paced function associated
with “model age” parameter γ .

The solution to model (15) can also be obtained by an
alternative updating strategy. Fixeing the weight vector u,
the SpNMFP model can be rewritten as

min
X,W̃

∥∥∥Ỹ− XW̃
∥∥∥2

F
+ λ‖W‖q (16)

where Ỹ = YU
1
2 , W̃ = WU(1/2), and U is a diagonal matrix

whose diagonal element is Unn = un . As W and W̃ have
similar sparsity structure and ‖W̃‖q ≤ ‖W‖q , the model (16)
can be modified as

min
X,W̃

∥∥∥Ỹ− XW̃
∥∥∥2

F
+ λ‖W̃‖q . (17)

It is clear that model (17) is also an �q-NMF unmixing
model and can be solved by the multiplicative update rule.
The final abundance matrix is W = W̃U−

1
2 .

When X and W are obtained, the weight un for the pixel n
can be optimized by

min
0≤un≤1

un�n + h(γ, un) (18)

where �n = ‖Yn− (XW)n‖2
2 is a constant for given X and W.

The detailed process of the proposed SpNMFP algorithm
can be summarized in Algorithm 2.

D. Self-Paced NMF for Element Weighting (SpNMFE)

The SpNMFB and SpNMFP algorithms deal with the band
and pixel noise in the row and column manners, respectively.
SpNMFB assigns a weight for each row (i.e., a band), while
SpNMFP gives each column (i.e., a pixel) a weight. They
consider either a row or a column as a processing unit.
However, the noise may not exist in an entire row or column
of hyperspectral data Y. In reality, there usually exist noises in
some specific spectral bands and spatial positions. This means
that some elements of matrix Y, but not its whole row or
column, are corrupted by noise. In order to deal with the
elementwise noise, we propose an Self-paced NMF model for
Element weighting (SpNMFE) as follows:

min
X,W,u

B,N∑
b,n=1

{ubn[Ybn − (XW)bn]2 + h(γ, ubn)}+λ‖W‖q . (19)

The model (19) can also be solved by an alternative updating
strategy. Fixing the weight ubn , the SpNMFE model can be
rewritten as

min
X,W

B,N∑
b,n=1

{
ubn[Ybn − (XW)bn]2

}+ λ‖W‖q (20)
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Algorithm 2 Self-Paced NMF Model for Pixel Weighting
(SpNMFP)

Input: Hyperspectral data matrix Y,
initial endmember X0 and abundance W0,
initial model age γ0 and step size η,
the number of repetitions R.

Output: Endmember and abundance matrices.
Repeatedly run the following steps R times:
1. Initialize X(0) = X0, W(0) =W0, γ (0) = γ0, set k = 1.
2. Run the following steps until convergence:

(a) calculate the pixel reconstruction errors:
�(k)

n = ‖Yn − (X(k−1)W(k−1))n‖2
2

(b) estimate self-paced weights:
u(k)

n = arg min
0≤un≤1

un�
(k)
n + h(γ (k−1), un)

(c) update weight: U(k) = diag
{

u(k)
1 , . . . , u(k)

N

}
(d) compute matrix:

Ỹ = Y(U(k−1))
1
2

W̃(k−1) = W(k−1)(U(k−1))
1
2

(e) update endmember and abundance:
(X(k), W̃(k)) = LqNMF(Ỹ, X(k−1), W̃(k−1))

W(k) = W̃(k)(U(k−1))−
1
2

(f) update model age: γ (k) = γ (k−1) + η
(g) k ← k + 1

3. Set X0 = X(k−1), W0 =W(k−1)

which is a weighted �q -NMF model (�q-WNMF) [23]. Impos-
ing additional sum-to-one constraint to the abundance matrix
W, the solution to (20) can be obtained by alternatively
updating the following two terms

X = X. ∗ (U. ∗ Y)WT

(U. ∗ (XW))WT
(21)

W = W. ∗ X̄T(Ū. ∗ Ȳ)

X̄T(Ū. ∗ (X̄W))+ λqWq−1
(22)

where U = {ubn}B,N
b,n=1 is a weight matrix, and Ū = [U; δ1T

N ].
When X and W are obtained, the weight ubn can be

optimized by

min
0≤ubn≤1

ubn�bn + h(γ, ubn) (23)

where �bn = (Ybn−(XW)bn)
2 is a constant for given X and W.

The detailed process of the proposed SpNMFE algorithm
can be summarized in Algorithm 3.

IV. EXPERIMENTS

In this section, our proposed �q-norm-based SpNMF meth-
ods (q = 1/2 for simplicity) are tested on both synthetic
and real-world data sets and compared with the following
unmixing methods: NMF [19], �1/2-NMF [5], �2,1-NMF [24],
correntropy-based NMF (CENMF) [12], correntropy-induced

Algorithm 3 Self-Paced NMF Model for Element Weighting
(SpNMFE)

Input: Hyperspectral data matrix Y,
initial endmember X0 and abundance W0,
initial model age γ0 and step size η.

Output: Endmember and abundance matrices.
Initialize X(0) = X0, W(0) =W0, γ (0) = γ0, set k = 1.
Run the following steps until convergence:

(a) calculate elementwise errors:
�

(k)
bn =

(
Ybn − (X(k−1)W(k−1))bn

)2

(b) estimate self-paced weights:
u(k)

bn = arg min
0≤ubn≤1

ubn�
(k)
bn + h(γ (k−1), ubn)

(c) update weight: U(k) = {
u(k)

bn }B,N
b,n=1

(d) update endmember and abundance:
(X(k), W(k)) = LqWNMF(Y, X(k−1), W(k−1), U(k))

(e) update model age: γ (k) = γ (k−1) × η
(f) k← k + 1

metric-based NMF (CIM-NMF) [25], and Huber NMF
(Huber-NMF) [25]. For all the NMF-based methods, the VCA
and fully constrained least-squares (FCLS) methods are
used to initialize the endmember matrix X0 and abundance
matrix W0, respectively, and the parameter δ for the abundance
sum-to-one constraint is set as 15 [6]. The regularization
parameter λ in �1/2-NMF or CENMF is dependent on the
sparsity of the material abundances and is estimated based
on the sparseness criterion [5]. In the CIM-NMF, the kernel
size is computed as an average reconstruction error [25].
In Huber-NMF, the cutoff parameter in the Huber loss function
is set as the median of reconstruction errors [25]. The spectral
angle distance (SAD) and the root-mean-square error (RMSE)
are used to evaluate the performance of different unmixing
methods. The SAD measures the distance between the true
and estimated endmember as follows:

SADk = arccos

(
xT

k x̃k

‖xk‖‖x̃k‖
)

(24)

where xk and x̃k are the kth reference and the estimated
endmember signatures, respectively. The RMSE is used to
measure the distance between the ground-truth abundance map
and its estimated abundance map as follows:

RMSEk =
(

1

N

∥∥wk − w̃k

∥∥2
2

) 1
2

(25)

where wk and w̃k are the kth true and estimated abundance
maps in the vector form.

As recommended in [17], the vectorwise SpNMF meth-
ods (i.e., SpNMFB and SpNMFP) use a mixture self-paced
function [22]

h(γ, ut ) = −ζ log

(
ut + ζ

γ1

)
, ζ = γ1γ2

γ1 − γ2
, 0 < γ2 < γ1

(26)
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and the corresponding weight has the form

ut = f (�t) =

⎧⎪⎨⎪⎩
1, �t ≤ γ2

0, �t ≥ γ1

ζ(γ1 − �t )/(γ1�t), γ2 < �t < γ1

(27)

where γ1 and γ2 are model age parameters.
It can be seen from (27) that the model age parameters are

used to bound the errors such that the bands or pixels with
smaller errors are assigned larger weights and vice visa. As the
range of error � is data-dependent, it is difficult to determine
its upper and lower bounds γ1 and γ2 directly. Considering
that the model age parameters are used to define the current
model size, we can directly determine the number of bands or
pixels involved in each learning process according to their
errors [17]. For this purpose, we predefine an increasing
sequence {T1, T2, . . . , Tmax} with Ti = 	ki

1T 
 and Tmax = T
(T = B for SpNMFB and T = N for SpNMFP), where Ti

denotes the number of bands or pixels selected in the i th SPL
process. In the i th iteration, we sort the loss vector �(i) in an
ascending order, obtain the sorted loss �(i)

a , and then set the
current model age as γ

(i)
1 = �(i)

a (Ti) and γ
(i)
2 = �(i)

a (	k2T 
).
That is, in the i th iteration, there are 	k2T 
 absolutely easy
(weight 1) and Tmax−Ti absolutely complex (weight 0) bands
or pixels. In the experiment, we define ki

1 = k1 + (i − 1)δ,
where k1 corresponds to the initial model age and is set as
k1 = 0.5, and the step size δ = 0.05. Here, k2 decides the
number of atoms to be deleted and is fixed as 0.2. The number
of repetitions R is set as 10.

By the integration of SPL weight function ut = f (�t ), the
latent SPL mixture loss function can be obtained as [16], [17]

F M (�) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�, � ≤ γ2

γ2 + ζ

(
log

�

γ2
+ γ2

γ1
− �

γ1

)
, γ2 < � < γ1

γ2 + ζ

(
log

γ1

γ2
+ γ2

γ1
− 1

)
, � ≥ γ1.

(28)

The elementwise SpNMF method (i.e., SpNMFE) uses
another mixture self-paced function [16], [26], [27]

h̃(γ, ubn) = 1

ubn + 1/γ
(29)

and the corresponding weight has the form

ubn = f̃ (�bn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, �bn ≤

(
γ

γ + 1

)2

0, �bn ≥ γ 2(
1√
�bn
− 1

γ

)
, otherwise

(30)

where the model age parameter γ is set as γ = γ × η
with η = 1.05 [26], and the initial value of γ is set as
γ0 = (mean{�bn, b = 1, . . . , B, n = 1, . . . , N})1/2.

A. Comparison of Different NMF Unmixing Methods

Denote error matrix as E = Y − XW ∈ RB×N and two
vectors consisting of the �2 norm of its row and column

Fig. 1. Comparison of different loss function. (a) Loss function. (b) Weight.

vectors as

er = (‖E1‖2, ‖E2‖2, . . . , ‖EB‖2)
T ∈ RB×1

ec = (‖E1‖2, ‖E2‖2, . . . , ‖EN‖2)
T ∈ RN×1.

We show the loss function and regularizer of different NMF
unmixing methods in Table I. It can be seen that �q-NMF
improves the original NMF by adding �q-regularizer on the
abundance matrix W, while other NMF methods modify the
least-squares-based F-norm loss function of NMF to robust
loss functions, such as �2,1-norm loss, correntropy-based loss,
Huber loss, and SPL losses. These robust NMF unmix-
ing methods can be transferred to weighted NMF methods,
and their corresponding weights are shown in the last col-
umn of Table I. They have different weighting strategies:
1) �2,1-NMF and SpNMFP can be considered as columnwise
pixel-weighted methods; 2) CENMF and SpNMFB are row-
wise band-weighted methods; and 3) CIM-NMF, Huber-NMF,
and SpNMFE are elementwise weighted methods.

To further compare different robust unmixing methods,
Fig. 1 shows the corresponding robust loss functions and
weights. It is obvious that the robust losses, i.e., Huber, �1,
CIM, and SPL mixture loss (28), can suppress the effect of
large errors. In particular, our SPL loss directly truncates the
loss of larger errors to a constant such that the effect of large
error elements (i.e., noise or outliers) is minimized. From the
weights, it can be seen that the �1 weights are dominated by the
errors around 0. The Huber weight is a combination of �2 and
�1 weights and has a suppression effect for large errors. Our
SPL weight consists of three parts: �2 weight (i.e., weight 1)
for small errors, �1 weight for moderate errors, and 0 weight
for large errors.

B. Experiments on Synthetic Data

Here, we select seven spectral signatures from the United
States Geological Survey (USGS) digital spectral library as
endmembers to generate the synthetic data. The spectral
signatures with reflectance values in 224 spectral bands in
the range 0.4–2.5 μm are shown in Fig. 2. These seven
spectral signatures consist of the endmember matrix X. The
abundances are generated based on [6] and [8] and recorded
in matrix W. By multiplying the endmember matrix X and the
abundance matrix W, we obtain the synthetic data Y = XW.

In order to evaluate the robustness of different algorithms,
the Gaussian noise is added to the synthetic data Y. The
following three experiments are conducted to investigate the
effect of different kinds of noise.
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TABLE I

COMPARISON OF DIFFERENT NMF UNMIXING METHODS

TABLE II

SAD AND THE STANDARD DERIVATION (IN PERCENT) RESULTS IN THE CASE OF BAND NOISE

Fig. 2. Spectral signatures of seven endmembers chosen from the USGS
library.

Experiment 1 (Effect of Band Noise): In this experiment,
the Gaussian noise is added to all spectral bands. The SNRs
of bands are generated using the normal distribution SNR ∼
N (SNR, 	2), where SNR ∈ {10, 15, 20, 25, 30} and 	 = 5.

Mean and standard derivation of SAD results over 20 ran-
domly runs are reported in Table II. It can be clearly seen that
the performance of each algorithm improves as the increase of
SNR. Robust unmixing algorithms, i.e., �2,1-NMF, CENMF,
CIM-NMF, and Huber-NMF, improve the unmixing perfor-
mance of NMF in the case of large noise (i.e., small SNR).
However, in the case of small noise, these algorithms
generate similar results with the original NMF and cannot

Fig. 3. Reference and estimated spectra for endmember 3 in the case of
band noise.

suppress the effect of noise. Our proposed SpNMF algorithms
(i.e., SpNMFE and SpNMFB) provide better results than other
methods. Especially, our SpNMFB produces the best results
in different amplitudes of band noise.

Compared with the original NMF, �1/2-NMF, �2,1-NMF,
CENMF, CIM-NMF, and Huber-NMF improve the SAD
results in Table II. However, they do not improve the RMSE
results, as shown in Table III. In contrast, our proposed
SpNMFB shows excellent performance in terms of both SAD
and RMSE.

To visualize the results, the reference and estimated spec-
tra for endmember 3 (i.e., “Andradite WS487”) are shown
in Fig. 3. It can be clearly seen that the comparison methods
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Fig. 4. Abundance maps for endmember 3 in the case of band noise. (a) Ground-truth. (b) NMF. (c) �1/2-NMF. (d) �2,1-NMF. (e) CENMF. (f) CIMNMF.
(g) HubNMF. (h) SpNMFB.

TABLE III

RMSE AND THE STANDARD DERIVATION (IN PERCENT) RESULTS IN THE CASE OF BAND NOISE

Fig. 5. Image of band 51. (a) Original image. (b) Noisy image.

produce large derivations after the band number 100, while the
estimated spectral curve by our SpNMFB is always consistent
with the original reference spectral curve. Fig. 4 shows the
abundance map of endmember 3 obtained by different meth-
ods, where the map of our SpNMFB is almost the same as
the original ground-truth map.

To investigate the band selection ability of SpNMFB,
we randomly select ten bands (i.e., 51, 83, 89, 148, 154,
160, 172, 190, 191, and 206) and add Gaussian noise with
SNR ∼ N (15, 52) to these bands. For a noisy band 51,
the corresponding original image and noisy image are shown
in Fig. 5, where the information in the original image is
almost lost in the noisy image. In this case, the unmixing
result will definitely be affected by the noise. Thus, it is better
to eliminate or alleviate the effect of these noisy bands. Our
proposed SpNMFB method uses an SPL strategy to assign a
weight for each band. The weights can reflect the quality of
different bands, as shown in Fig. 6. The ten noisy bands are
assigned a small weight value 0. This demonstrates that our
SpNMFB can effectively select some “good” or “easy” bands
into the unmixing model and is robust to band noise.

Experiment 2 (Effect of Pixel Noise): In this experiment,
the Gaussian noise is added to all pixels. The SNRs of
different pixels are generated using the normal distribution
SNR ∼ N (SNR, 	2), where SNR ∈ {10, 15, 20, 25, 30} and
	 = 5. The mean and standard derivation of SAD and RMSE

Fig. 6. Weight of different bands learned by the SpNMFB, where the red
circles denote noisy bands.

Fig. 7. Reference and estimated spectra for endmember 3 in the case of
pixel noise.

results are shown in Tables IV and V, respectively. It can be
clearly seen that our proposed SpNMFP algorithm provides
the best overall results in the case of pixel noise.

The reference and estimated spectra for endmember 3 are
shown in Fig. 7, where the spectral curve of our SpNMFP
almost coincides with the original reference spectral curve.
Fig. 8 shows the abundance map of endmember 3 obtained by
different methods. It is clear that the map of our SpNMFP is
almost the same as the original ground-truth map, while other
algorithms produce a false yellow region on the right upper
side of the map.
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TABLE IV

SAD AND THE STANDARD DERIVATION (IN PERCENT) RESULTS IN THE CASE OF PIXEL NOISE

TABLE V

RMSE AND THE STANDARD DERIVATION (IN PERCENT) RESULTS IN THE CASE OF PIXEL NOISE

Fig. 8. Abundance maps for endmember 3 in the case of pixel noise. (a) Ground truth. (b) NMF. (c) �1/2-NMF. (d) �2,1-NMF. (e) CENMF. (f) CIMNMF.
(g) HubNMF. (h) SpNMFP.

Fig. 9. Spectral curves of selected 100 pixels. (a) Original pixels. (b) Noisy
pixels.

To investigate the pixel selection ability of SpNMFP,
we randomly select 100 pixels and add the Gaussian noise
with SNR ∼ N (15, 52) to these pixels. The original and noisy
spectral curves of these 100 pixels are shown in Fig. 9, where
the spectral characteristics in the original spectra are almost
lost in the noisy spectra. To eliminate the effect of pixel noise,
our proposed SpNMFP method assigns a weight for each pixel,
as shown in Fig. 10. It is obvious that 100 noisy pixels are
located in the black region. That is, the weight of noisy pixels
is 0. By gradually selecting “good” pixels into the unmixing
model, SpNMFP can exclude noisy pixels.

Experiment 3 (Effect of Element Noise): In this experiment,
the whole synthetic data Y are degraded by the Gaussian
noise with distribution SNR ∼ N (SNR, 	2), where SNR ∈
{10, 15, 20, 25, 30} and 	 = 5. In this case, we add the noise
to the data matrix Y simultaneously rather than adding noise
to each row or column. The mean and standard derivation

Fig. 10. Weight of different pixels learned by the SpNMFP, where black and
white colors denote weights 0 and 1, respectively. The red crosses indicate
the position of noisy pixels.

Fig. 11. Real data sets used in the experiments. (a) Jasper. (b) Urban.

of SAD and RMSE results are shown in Tables VI and VII,
respectively. It can be clearly seen that our proposed SpNMFE
and SpNMFB provide much better results than other methods
in the case of elementwise image noise.
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TABLE VI

SAD AND THE STANDARD DERIVATION (IN PERCENT) RESULTS IN THE CASE OF ELEMENT NOISE

TABLE VII

RMSE AND THE STANDARD DERIVATION (IN PERCENT) RESULTS IN THE CASE OF ELEMENT NOISE

TABLE VIII

SAD OF DIFFERENT METHODS ON THE JASPER DATA SET WITH THE NOISY BANDS

Fig. 12. Endmember signatures estimated by different methods over the Jasper data with the noisy bands. (a) Tree. (b) Soil. (c) Water. (d) Road.

C. Experiments on Real Data
In this section, the performance of different unmixing

methods is validated using two real-world hyperspectral data
sets, i.e., Jasper and Urban, as shown in Fig. 11.

The first hyperspectral data set is the Jasper data set, which
is collected by an airborne visible/infrared imaging spectrom-
eter (AVIRIS) sensor. The data set consists of 224 spectral
bands ranging from 380 to 2500 nm. The spectral resolution
is up to 9.46 nm. The size of the scene is 512 × 614. In the
experiments, a subimage of 100 × 100 pixels is used. There
are four targets in the selected region, including road, soil,
water, and tree. Due to dense water vapor and atmospheric
effects, there exists some noisy bands, including the bands
1–3, 108–112, 154–166, and 220–224. In this experiment,
we investigate the performance of algorithms on both data

containing noisy band images (i.e., the original data with
B = 224) and data without noisy band images (i.e., B = 198).

Table VIII shows the SAD results obtained by different
methods on the Jasper data set with noisy bands. From the
results, we can see that all robust methods improve the original
NMF method, and our proposed SpNMFP provides the best
result. Although the existing NMF methods slightly improve
NMF, they show very poor results on the endmember “Road.”
In contrast, our SpNMFB and SpNMFP show relatively bet-
ter results on this endmember. Fig. 12 shows the reference
endmember signatures and estimated endmember signatures
by different methods over the Jasper data with the noisy
bands. For three targets, i.e., Tree, Water, and Soil, the esti-
mated endmember curves by different methods show similar
variation tendencies with the reference endmember signa-
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Fig. 13. Abundance maps for endmember 4 (“Road”) of the Jasper data with the noisy bands. (a) Ground truth, (b) NMF. (c) �1/2-NMF. (d) �2,1-NMF.
(e) CENMF. (f) CIMNMF. (g) HubNMF. (h) SpNMFE. (i) SpNMFB. (j) SpNMFP.

Fig. 14. Two noisy bands of Jasper. (a) Band 2. (c) Band 224.

Fig. 15. Band weights of Jasper with the noisy bands.

tures. Notwithstanding, the results of our proposed SpNMFE,
SpNMFB, and SpNMFP methods are obviously more close to
the true reference endmembers. On the target “Road,” except
for SpNMFB and SpNMFP, other methods are almost failed.
The abundance maps corresponding to endmember “Road”
obtained by different methods are shown in Fig. 13. It can
be clearly seen that our proposed SpNMFP provides highly
consistent results with the ground-truth abundance, while other
methods generate false estimation on the middle part and lose
the estimation on the right part of the ground-truth abundance
map.

Fig. 16. Pixel weights of Jasper.

Fig. 17. SAD versus number of repetitions for (a) SpNMFB and (b) SpNMFP
on the Jasper data.

Compared with other NMF methods, our proposed SpN-
MFB and SpNMFP methods achieve much robust unmixing
performance by adaptively assigning small weights to noisy
bands and pixels according to SPL. Fig. 14 shows two noisy
bands (i.e., bands 2 and 224), and Fig. 15 shows the the
weights of different bands estimated by SpNMFB. It can
be seen that the noisy bands, such as bands 1–3, 108–112,
154–166, and 220–224, are assigned small weights. Therefore,
SpNMFB can effectively suppress the negative effects of noisy
bands and is much more robust to band noise.

Fig. 16 shows the weights for different pixels estimated by
SpNMFP. It can be seen that the pixels on the edge of objects
or on the regions with much detailed information have large
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Fig. 18. Endmember signatures estimated by different methods over the Jasper data without the noisy bands. (a) Tree. (b) Soil. (c) Water. (d) Road.

Fig. 19. Abundance maps for endmember 4 (“Road”) of Jasper data without the noisy bands. (a) Ground truth. (b) NMF. (c) �1/2-NMF. (d) �2,1-NMF.
(e) CENMF. (f) CIMNMF. (g) HubNMF. (h) SpNMFE. (i) SpNMFB. (j) SpNMFP.

Fig. 20. Endmember signatures estimated by different methods over the Urban data. (a) Asphalt. (b) Grass. (c) Tree. (d) Roof.

TABLE IX

SAD OF DIFFERENT METHODS ON THE JASPER DATA SET WITHOUT THE NOISY BANDS

weights, while the pixels in the inner of homogenous regions
have small weights. This means that not all pixels are useful
for the unmixing, and selecting some representative “good”
pixels can benefit the unmixing.

Fig. 17 shows the SAD results of SpNMFB and SpNMFP
in the case of different numbers of repetitions. It can be
seen that the performance of SpNMFB and SpNMFP can be
improved by repeatedly executing the algorithms several times,
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Fig. 21. Abundance maps on the Urban data. Each row denotes the maps of ground truth, NMF, �1/2-NMF, �2,1-NMF, CENMF, SpNMFE, and SpNMFB,
respectively.

TABLE X

SAD OF DIFFERENT METHODS ON THE URBAN DATA SET

and the number of repetitions R = 10 corresponds to good
results.

Table IX shows the SAD results obtained by different
methods on the Jasper data set without noisy bands (i.e.,
198 bands). Fig. 18 shows the estimated endmember sig-
natures, and Fig. 19 shows the estimated abundance maps
corresponding to material “Road.” The results on 198 bands
are similar to the abovementioned results on the 224 bands.
By deleting noisy bands in advance, our proposed SpNMF
methods also show relatively better results than other methods.
Compared with the results on the full bands, on endmember
“Road,” the endmember signature and abundance map of
our proposed SpNMF methods (i.e., SpNMFE, SpNMFB,
and SpNMFP) are slightly improved, while those of other
comparison methods even become worse by deleting noisy
bands.

The second data set used in the experiment is the Urban
data set. The spectral and spatial resolutions are 10 nm
and 2 m, respectively. The scene has 307 × 307 pixels and

210 wavelengths ranging from 400 to 2500 nm. Due to the
dense water vapor and atmospheric effects, the channels 1–
4, 76, 87, 101–111, 136–153, and 198–210 are removed, and
the remaining 162 bands are used for hyperspectral unmixing
analyses [5], [8]. There are four endmembers: Asphalt, Grass,
Tree, and Roof.

Table X shows the SAD results obtained by different
methods on the urban data set. Fig. 20 shows the estimated
endmember signatures by different methods. It can be seen that
our proposed SpNMF methods are much more accurate than
other methods especially on the materials: Grass, Tree, and
Roof. Taking “Roof” as an example, the estimated endmember
signatures of other methods are distorted, while our methods
still can approximate the true endmember curve. Fig. 21 shows
the estimated abundance maps by different methods. It is
clear that our SpNMFB generates abundance maps that are
consistent with the ground-truth maps.

Fig. 22 shows the SAD results of SpNMFB and SpNMFP
in the case of different numbers of repetitions. It can be seen
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Fig. 22. SAD versus number of repetitions for (a) SpNMFB and (b) SpNMFP
on the Urban data.

that SpNMFB and SpNMFP achieve good performance when
the number of repetitions R is larger than 4.

V. CONCLUSION

In this article, we proposed three robust self-paced non-
NMF (SpNMF) unmixing models to cope with the rowwise
band noise, the columnwise pixel noise, and the elementwise
image noise. The main characteristic of SpNMF is that an
SPL strategy is used to automatically select appropriate atoms
(bands or pixels or elements) for unmixing. By excluding
bad atoms, the SpNMF models are more robust to noise
and outliers. Experimental results on simulated and two real
hyperspectral data sets have demonstrated that our proposed
SpNMF methods are more accurate and robust than existing
NMF methods. In particular, SpNMF methods can effectively
discriminate noisy bands or pixels by assigning small weights
for them.
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